目錄

3.1 節 垂直線	1
定理:3.1-1 與兩端點相等距離的兩點連線與此兩端點連線垂直	2
定理:3.1-2 與兩端點相等距離的兩點連線是兩端點連線之平分線	3
定理:3.1-3 等腰三角形頂角平分線垂直平分底邊	4
定理:3.1-4 通過直線上一點,只有一條直線與此直線垂直	6
定理:3.1-5 通過直線外一點,只有一條直線垂直此直線	7
習題 3.1	8
3.2 節 平行線	11
定理 3.2-1 兩條直線如都與一直線垂直,則此二直線互相平行	12
定理 3.2-2 與兩平行線中之一直線垂直之直線必定與另一直線垂直	13
定理 3.2-3 夾於兩平行直線之間且垂直於兩直線之兩線段相等	14
定義 3.2-1 截線	15
定義 3.2-2 內角	15
定義 3.2-3 外角	16
定義 3.2-4 內錯角	16
定義 3.2-5 外錯角	16
定義 3.2-6 同位角	17
定義 3.2-7 同側內角	17
定義 3.2-8 同側外角	17
定理 3.2-4 平行線的內錯角相等定理	20
定理 3.2-5 平行線的外錯角相等定理	24
定理 3.2-6 平行線的同位角相等定理	25
定理 3.2-7 平行線的同側內角互為補角定理	33
定理 3.2-8 內錯角相等的兩線平行定理	37
定理 3.2-9 外錯角相等的兩線平行定理	39
定理 3.2-10 同位角相等的兩線平行定理	40
定理 3.2-11 同侧內角互補的兩線平行定理	44
習題 3.2	53
3.3 節 對稱圖形	
定義 3.3-1 線對稱圖形	
線對稱圖形之判斷要領	
定義 3.3-2 點對稱圖形	65
點對稱圖形之判斷要領	66
習題 3.3	
本章重點	
進階思考題	
歷年基測題目	78

第三章 垂直線與平行線

3.1 節 垂直線

有關垂直線的定義,在1.4節中已經提及。我們在此將定義1.4-1再提一次,如圖3.1-1所示,如果 \overline{CD} 和 \overline{AB} 所形成的交角是直角,則我們說 \overline{CD} 和 \overline{AB} 互相垂直。

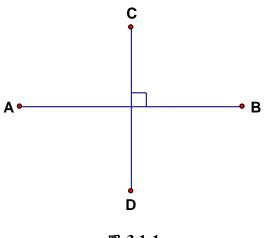
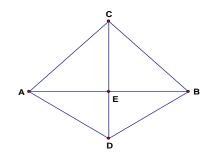


圖 3.1-1

我們一定好奇,在什麼情況之下,兩條直線會互相垂直呢?接下來,我們要給一個一連串的定理來說明此點:

定理:3.1-1 與兩端點相等距離的兩點連線與此兩端點連線垂直



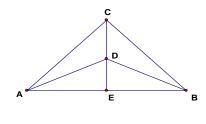


圖 3.1-2

已知:如圖 3.1-2 所示, C 點及 D 點為不在 \overline{AB} 線段上的雨點, $\overline{AC} = \overline{BC}$, $\overline{AD} = \overline{BD}$

求證: $\overline{AB} \perp \overline{CD}$

想法:(1) 若可證得 \triangle ACE \cong \triangle BCE,則由全等三角形對應角相等可得知 \angle CEA= \angle CEB=90°;

(2) 已知判斷兩個三角形全等的方法有:

1. 兩邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理

2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理

3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

證明:	
敘述	理由
(1) 如圖 $3.1-2$, \triangle ACD 及 \triangle BCD 中, $\frac{\overline{AC} = \overline{BC}}{\overline{AD} = \overline{BD}}$ $\overline{CD} = \overline{CD}$	已知 已知 雨三角形共用此邊
(2) \triangle ACD \cong \triangle BCD (3) \angle ACD $=$ \angle BCD (4) \overline{CD} 直線與 \overline{AB} 線相交於 E 點 (5) \triangle ACE \mathcal{B} \triangle BCE 中, \angle ACE $=$ \angle BCE \overline{AC} $=$ \overline{BC}	由(1) S.S.S.三角形全等定理 由(2) 兩全等三角形的對應角相等 兩直線交點公理 由(3) ∠ACD=∠BCD 已知
$\overline{CE} = \overline{CE}$	兩三角形共用此邊

(6) $\triangle ACE \cong \triangle BCE$

(7) $\angle CEA = \angle CEB$

(8) $\angle CEA + \angle CEB = 180^{\circ}$

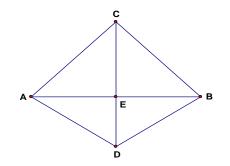
(9) $\angle CEA = \angle CEB = 90^{\circ}$

(10) 所以 $\overline{AB} \perp \overline{CD}$

由(5) S.A.S.三角形全等定理由(6) 兩全等三角形的對應角相等如圖 3.1-2 (ĀEB為一直線)由(7) & (8)

Q. E. D.

定理:3.1-2 與兩端點相等距離的兩點連線是兩端線連線之平分線



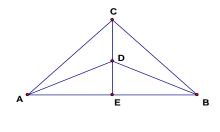


圖 3.1-3

已知:如圖 3.1-3 所示, C 點及 D 點為不在 \overline{AB} 線段上的兩點, $\overline{AC} = \overline{BC}$, $\overline{AD} = \overline{BD}$

求證: $\overline{AE} = \overline{BE}$

想法:(1) 若可證得 \triangle ACE \cong \triangle BCE, 則由全等三角形對應邊相等可得知 $\overline{AE} = \overline{BE}$;

- (2) 已知判斷兩個三角形全等的方法有:
 - 1. 雨邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理
 - 2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理
 - 3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

證明:

敘述	理由
(1) 如圖 3.1-3, \triangle ACD 及 \triangle BCD 中, $\overline{AC} = \overline{BC}$ $\overline{AD} = \overline{BD}$ $\overline{CD} = \overline{CD}$	已知 已知 兩三角形共用此邊
$(2) \triangle ACD \cong \triangle BCD$	由(1) S.S.S.三角形全等定理
$(3) \angle ACD = \angle BCD$	由(2) 兩全等三角形的對應角相等
(4) \overline{CD} 直線與 \overline{AB} 線相交於 E 點	雨直線交點公理
(5) \triangle ACE $\mathcal{R} \triangle$ BCE ψ , \angle ACE $= \angle$ BCE $\overline{AC} = \overline{BC}$ $\overline{CE} = \overline{CE}$	由(3) ∠ACD=∠BCD 已知 雨三角形共用此邊
$(6) \triangle ACE \cong \triangle BCE$	由(5) S.A.S.三角形全等定理
$(7) \ \overline{AE} = \overline{BE}$	由(6) 兩全等三角形的對應邊相等

Q. E. D.

定理:3.1-3 等腰三角形頂角平分線垂直平分底邊

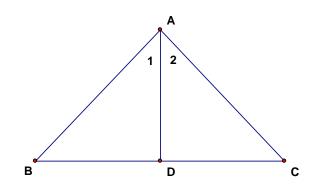


圖 3.1-4

已知: 如圖 3.1-4 所示, \triangle ABC 中,若 $\overline{AB} = \overline{AC}$, \angle BAD= \angle CAD (即 $\angle 1 = \angle 2$)

求證: $\overline{AD} \perp \overline{BC}$ 且 $\overline{BD} = \overline{CD}$ 。

想法:(1) 若可證得 \triangle ABD $\cong \triangle$ ACD,則由全等三角形對應角相等可得知 \angle ADB= \angle ADC=90°,對應邊相等可得 $\overline{BD}=\overline{CD}$

- (2) 已知判斷兩個三角形全等的方法有:
 - 1. 兩邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理
 - 2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理
 - 3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

證明:

敘述	理由
(1) △ABD 及△ACD 中,	
$\angle 1 = \angle 2$	已知
$\overline{AB} = \overline{AC}$	已知
$\overline{AD} = \overline{AD}$	兩三角形共用此邊
$(2) \triangle ABD \cong \triangle ACD$	由(1) S.A.S.全等三角形定理
$(3) \angle ADB = \angle ADC \&$	 由(2) 兩全等三角形的對應角 &
$\overline{BD} = \overline{CD}$	對應邊相等
$(4) \angle ADB + \angle ADC = 180^{\circ}$	如圖 3.1-4 (BDC 為一直線)
(5) $\angle ADB + \angle ADB = 180^{\circ}$ $\therefore \angle ADB = 90^{\circ}$	由(3) \angle ADB= \angle ADC & (4)
(6) ∠ADB=∠ADC=90° ∘	由(3) $\angle ADB = \angle ADC$ &
	$(5) \angle ADB = 90^{\circ}$
(7) $\overline{AD} \perp \overline{BC}$	由(6)

以下是另一個垂直線的例子。

例題 3.1-1

已知:如圖 3.1-5 所示, \triangle ABC 中,若 \overline{AB} = \overline{AC} , \overline{BD} = \overline{CD} 。

求證: $\overline{AD} \perp \overline{BC}$ 。

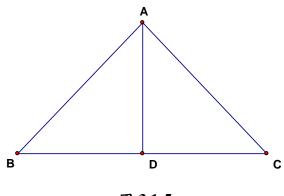


圖 3.1-5

想法:(1) 若可證得 \triangle ABD $\cong \triangle$ ACD,則由全等三角形對應角相等可得知 \angle ADB= \angle ADC=90°。

- (2) 已知判斷兩個三角形全等的方法有:
 - 1. 兩邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理
 - 2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理
 - 3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

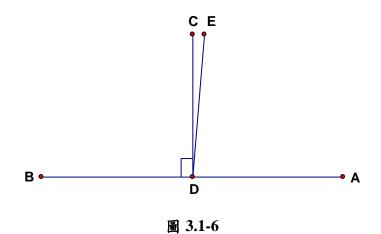
證明:

叙述	理由
(1) △ABD 及△ACD 中,	
$\overline{AB} = \overline{AC}$	已知
$\overline{BD} = \overline{CD}$	已知
$\overline{AD} = \overline{AD}$	兩三角形共用此邊
$(2) \triangle ABD \cong \triangle ACD$	由(1) S.S.S.全等三角形定理
$(3) \angle ADB = \angle ADC$	由(2) 兩全等三角形對應角相等
$(4) \angle ADB + \angle ADC = 180^{\circ}$	如圖 3.1-5 (BDC 為一直線)
$(5) \angle ADB = \angle ADC = 90^{\circ}$	由(3) & (4)
(6) $\overline{AD} \perp \overline{BC}$	由(5)

Q.E.D

在結束這一小節以前,我們要再討論兩個重要的定理。

定理: 3.1-4 通過直線上一點,只有一條直線與此直線垂直



已知:如圖 3.1-6 所示,D 為 \overline{AB} 上一點, \overline{CD} $\perp \overline{AB}$,假設 \overline{ED} $\perp \overline{AB}$ 。

求證: \overline{ED} 與 \overline{CD} 重合。

想法: 若證得 $\angle EDB = \angle CDB$,則可得知 \overline{ED} 與 \overline{CD} 重合

證明:

	理由
$(1) \angle EDB = 90^{\circ}$	假設 \overline{ED} 上 \overline{AB}
$(2) \angle CDB = 90^{\circ}$	已知 $\overline{CD}ot\overline{AB}$
$(3) \angle EDB = \angle CDB$	由(1) & (2)
(4) \overline{ED} 與 \overline{CD} 重合	由(3) & 等角定義

Q. E. D

定理:3.1-5 通過直線外一點,只有一條直線垂直此直線

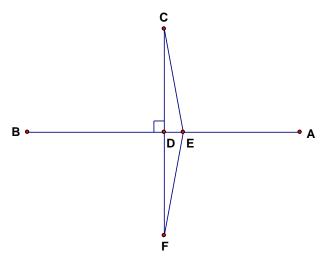


圖 3.1-7

已知:如圖 3.1-7 所示,C 為 \overline{AB} 外一點, $\overline{CD} \perp \overline{AB}$, $\overline{CE} \perp \overline{AB}$

求證: \overline{CD} 與 \overline{CE} 重合

想法: 若能證得 \overline{CDF} 與 \overline{CEF} 重合,即可知 \overline{CD} 與 \overline{CE} 重合

證明:

叙述	理由
(1) 延長 \overline{CD} 至 F, 使 $\overline{CD} = \overline{DF}$	延長線
(2) 連接 EF	兩點可作一直線(直線公理)
(3) \angle CDE+ \angle FDE=180°	CDF 為一直線及平角定義
(4) \triangle CDE 及 \triangle FDE 中, $\overline{CD} = \overline{DF}$, \angle CDE= \angle FDE= 90° , $\overline{DE} = \overline{DE}$	由 (1) 的延長線作法, 已知 $\overline{CD}oldsymbol{\perp}\overline{AB}$ 及垂直定義, 雨三角形共用此邊
$(5) \triangle CDE \cong \triangle FDE$	由(4) 三角形 S.A.S.全等定理
$(6) \angle CED = \angle FED$	由(5) 全等三角形之對應角相等
$(7) \angle CED = 90^{\circ}$	已知 $\overline{CE}ot\overline{AB}$
$(8) \angle CED + \angle FED = 180^{\circ}$	由 (6) & (7)
(9) \overline{CEF} 為一直線	平角的定義
(10) 故 \overline{CDF} 與 \overline{CEF} 重合,即 \overline{CD} 與 \overline{CE} 重合	過C與F兩點只有一直線

Q. E. D

習題 3.1

習題 3.1-1

圖 3.1-8 中, $\overline{AB} = \overline{BC} = \overline{CD} = \overline{AD}$,試證 $\overline{AC} \perp \overline{BD}$ 。

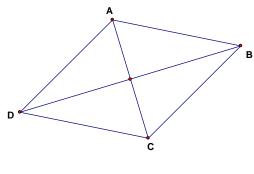
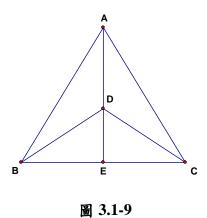


圖 3.1-8

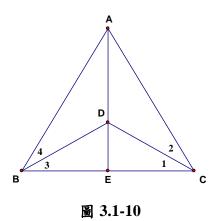
習題 3.1-2

圖 3.1-9 中, $\overline{AB} = \overline{AC}$, $\overline{BD} = \overline{CD}$,試證 $\overline{AE} \perp \overline{BC}$ 。



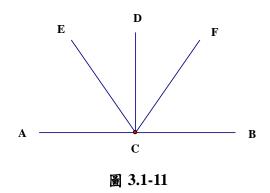
習題 3.1-3

圖 3.1-10 中, $\overline{AB} = \overline{AC}$, \overline{BD} 為 $\angle ABC$ 的平分線, \overline{CD} 為 $\angle ACB$ 的平分線, \overline{BD} 與 \overline{CD} 相交於 D,試證 $\overline{AE} \perp \overline{BC}$ 。



習題 3.1-4

圖 3.1-11 中, $\overline{AB}\bot\overline{CD}$, \overline{CD} 為 \angle ECF 的角平分線,試證 \angle ACE= \angle BCF。



習題 3.1-5

圖 3.1-12 中, \angle BAC 與 \angle BCA 互為餘角, \angle DEC 與 \angle DCE 互為餘角,試證 \angle BAC= \angle DEC。

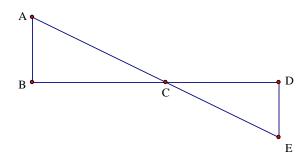


圖 3.1-12

3.2 節 平行線

在 1.4 節,我們已經給平行線下了定義,我們現在將定義 1.4-1 在此再敘述一遍。如圖 3.2-1 所示,兩直線如永不相交,則我們稱此兩直線互相平行。以 $\|$ 表示之,以圖 3.2-1 為例,我們說 \overline{AB} $\|$ \overline{CD} $\|$

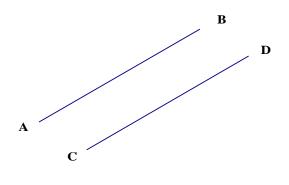
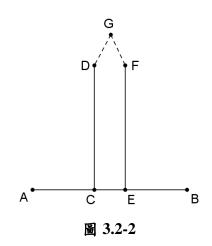


圖 3.2-1

在上一節,我們討論了很多有關垂直線的定理,在以下,我們將證明一個非 常重要的定理。

定理 3.2-1 兩條直線如都與一直線垂直,則此二直線互相平行



已知:如圖 3.2-2 所示, $\overline{CD}\bot\overline{AB}$, $\overline{EF}\bot\overline{AB}$ 。

求證: $\overline{CD} \parallel \overline{EF} \circ$

想法:通過直線外一點,只有一條直線與此一直線垂直

證明:

金	理由
(1) 假設 \overline{CD} 與 \overline{EF} 為不互相平行的兩相異直線,則 \overline{CD} 與 \overline{EF} 必交於 G 點。	平行線永不相交
(2) $\overline{GC} \perp \overline{AB} \circ$	已知(因GDC為一直線)
(3) $\overline{GE} \perp \overline{AB} \circ$	已知(因GFE為一直線)
(4) \overline{GDC} 與 \overline{GFE} 必為一直線。	過直線外一點,只有一條直線垂直此直線
$(5) \; \overline{CD} \parallel \overline{EF}$	由(4)與(1)的假設互相矛盾,所以 $\overline{CD} \parallel \overline{EF}$
	Q. E. D.

定理 3.2-2 與兩平行線中之一直線垂直之直線必定與另一直線垂直

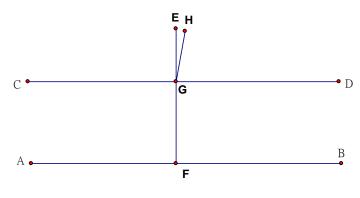


圖 3.2-3

已知: 如圖 3.2-3 所示, $\overline{AB} \parallel \overline{CD}$, $\overline{EF} \perp \overline{AB}$, \overline{EF} 與 \overline{CD} 相交於 G。

求證: $\overline{EF} \perp \overline{CD}$ 。

想法:(1) 如雨直線都垂直某直線,則此雨直線必定平行

(2) 通過直線外一點,只有一條直線與此一直線平行

證明:

	理由
(1) 通過 G 作 $\overline{GH} \perp \overline{AB}$ 。	延長線畫法
(2) $\overline{AB} \perp \overline{EF} \circ$	已知
(3) $\overline{GH} \parallel \overline{EF} \circ$	如兩直線都垂直某直線,則此兩直線必定平行
(4) \overline{GH} 和 \overline{GE} 重合。	通過直線外一點,只有一條直線與此一直線平行
(5) $\overline{CD} \perp \overline{EF} \circ$	CGD 為一直線。
	O F D

Q. E. D.

以下,我們將再提出一個非常有用的定理。

定理 3.2-3 夾於兩平行直線之間且垂直於兩直線之兩線段相等。 (兩平行線間的距離不變,處處等長)

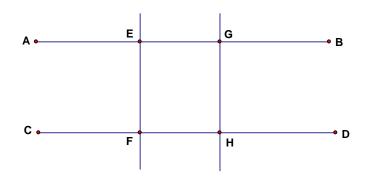


圖 3.2-4

已知:如圖 3.2-4 所示, $\overline{AB} \parallel \overline{CD}$, $\overline{EF} \perp \overline{AB}$, $\overline{EF} \perp \overline{CD}$, $\overline{GH} \perp \overline{AB}$, $\overline{GH} \perp \overline{CD}$

求證: $\overline{EF} = \overline{GH}$

想法:利用移形公理

證明:

敘述	理由
(1) 將 \overline{EF} 向右平移,使 E 點與 G 點重合	移形公理
(2) $\overline{EF} \perp \overline{CD}$ $\perp \overline{GH} \perp \overline{CD}$	已知 $\overline{EF}oldsymbol{\perp}\overline{CD}$ 且 $\overline{GH}oldsymbol{\perp}\overline{CD}$
(3) EF與GH必為同一直線	由 (1) E 點與 G 點重合 & (2) $\overline{EF} \perp \overline{CD}$ 且 $\overline{GH} \perp \overline{CD}$ 過直線外 一點,只有一條直線垂直此直線
(4) F 點與 H 點重合	由 (1) E 點與 G 點重合 $\&$ (3) \overline{EF} 與 \overline{GH} 必為同一直線 $\&$ F 點與 H 點皆 在 \overline{CD} 上
$(5) \ \overline{EF} = \overline{GH}$	由(1) & (4) 兩點間只有一條線段

Q. E. D.

定義 3.2-1 截線:

一線與多條直線相交,則稱此線為截線。 圖 3.2-5 中之 \overline{AB} 與 \overline{CD} 都稱為截線。

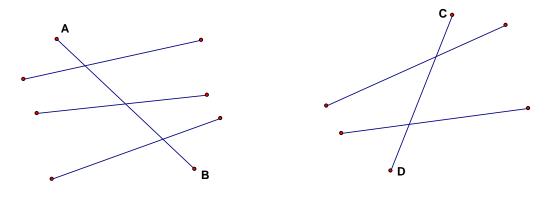


圖 3.2-5

不論兩直線平行與否,都可能有一截線和它們相交。相交的結果會產生各種的角。以下,我們就要給各種角下定義。

定義 3.2-2 內角:

在兩直線內側的角,叫做內角。

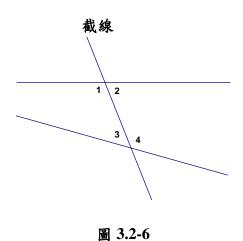


圖 3.2-6 中, ∠1, ∠2, ∠3, ∠4, 均為內角。

定義 3.2-3 外角:

在雨直線外側的角,叫做外角。

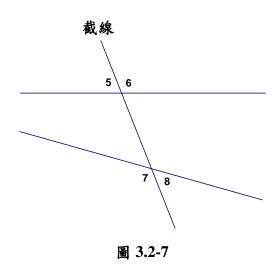


圖 3.2-7 中 , ∠5 , ∠6 , ∠7 , ∠8 , 均為外角 , △8

定義 3.2-4 內錯角:

位居於截線兩側且不相鄰的內角,叫做內錯角。 在圖 3.2-6 中, \angle 2 和 \angle 3 互為內錯角, \angle 1 和 \angle 4 是另一組內錯角。

定義 3.2-5 外錯角:

位居於截線兩側且不相鄰的外角,叫做外錯角。 在圖 3.2-7 中, ∠5 和 ∠8 互為外錯角, ∠6 和 ∠7 是另一組外錯角。

定義 3.2-6 同位角:

位居於截線同側且不相鄰的內角與外角,叫做同位角。

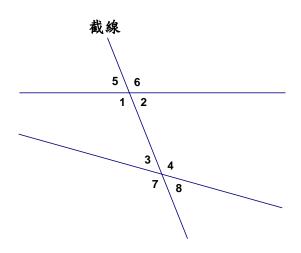


圖 3.2-8

在圖 3.2-8 中, $\angle 1$ 和 $\angle 7$ 是一組同位角, $\angle 2$ 與 $\angle 8$, $\angle 5$ 與 $\angle 3$ 以及 $\angle 6$ 與 $\angle 4$ 都是同位角。

定義 3.2-7 同側內角:

位於截線同側的內角,叫做同側內角。

在圖 3.2-6 中, ∠1 和 ∠3 為一組同側內角, ∠2 和 ∠4 為另一組同側內角。

定義 3.2-8 同側外角:

位於截線同側的外角,叫做同側外角。

在圖 3.2-7 中, ∠5 和 ∠7 為一組同側外角, ∠6 和 ∠8 為另一組同側外角。

例題 3.2-1:

如圖 3.2-9,L 是 L_1 和 L_2 的截線,則:

- (1)∠2 的同位角為 ____。
- (2) ∠4 的同側內角為 _____。
- (3) ∠5 的內錯角為 ____。

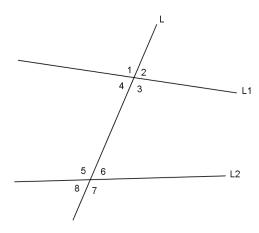


圖 3.2-9

想法:(1) 位於截線兩側且不相鄰的內角,叫做內錯角。

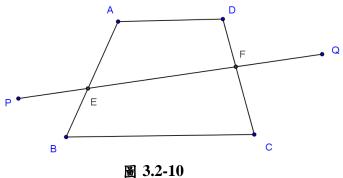
- (2) 位於截線同側且不相鄰的內角與外角,叫做同位角。
- (3) 位於截線同側的內角,叫做同側內角。

	理由
(1) ∠2 的同位角為∠6	同位角的定義
(2) ∠4 的同側內角為∠5	同側內角的定義
(3) ∠5 的內錯角為∠3	內錯角的定義

例題 3.2-2:

如圖 3.2-10, \overline{PQ} 與四邊形 ABCD 交於 E、F 兩點。

- (1)∠AEF的同位角是哪一個角?
- (2)∠AEF的內錯角是哪一個角?
- (3) ∠AEF 的同側內角是哪一個角?



想法:(1) 位於截線兩側且不相鄰的內角,叫做內錯角。

- (2) 位於截線同側且不相鄰的內角與外角,叫做同位角。
- (3) 位於截線同側的內角,叫做同側內角。

敘述	理由
(1) ∠AEF 的同位角為∠DFQ	同位角的定義
(2) ∠AEF 的內錯角為∠CFE	內錯角的定義
(3) ∠AEF 的同側內角為∠DFE	同側內角的定義

定理 3.2-4 平行線的內錯角相等定理

一截線與兩平行線相交所造成的一組內錯角相等

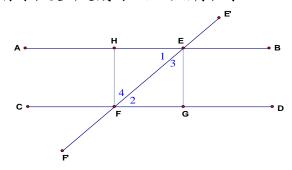


圖 3.2-11

已知:如圖 3.2-11 中, $\overline{AB} \parallel \overline{CD}$, \overline{EF} 為截線

求證: ∠1=∠2, ∠3=∠4

想法 :利用兩全等三角形對應角相等的性質 證明 :	
敘述	理由
(1) 通過 F 及 E , $\equiv \overline{FH}$ 及 \overline{GE} 垂 直於 \overline{AB} 之 直線 ,分別與 \overline{AB} 及 \overline{CD} 交於 H 及 G 。	延長線作圖
(2) $\overline{HF} \perp \overline{CD}$, $\overline{EG} \perp \overline{CD}$ \circ	與兩平行線 $(\overline{AB}$ 與 \overline{CD})中之一直線 (\overline{AB}) 垂直,必定與另一直線 (\overline{CD}) 垂直
$(3) \overline{HF} = \overline{EG} \circ$	夾於兩平行直線 $(\overline{AB}$ 與 $\overline{CD})$ 且垂直 於兩直線 $(\overline{AB}$ 與 $\overline{CD})$ 之兩線段 $(\overline{HF}$ 與 $\overline{EG})$ 相等
(4) $\overline{HF} \parallel \overline{EG} \circ$	兩條直線(\overline{HF} 與 \overline{EG})如都與一直線 (\overline{AB}) 垂直,則此兩直線平行
(5) $\overline{HE} \perp \overline{HF}$, $\overline{HE} \perp \overline{EG}$, $\overline{FG} \perp \overline{HF}$, $\overline{FG} \perp \overline{EG}$ \circ	如圖 3.2-11 所示
(6) $\overline{HE} = \overline{FG} \circ$	夾於兩平行線(\overline{HF} 與 \overline{EG})之間且垂直 於兩直線之兩線段(\overline{HE} 與 \overline{FG})相等
(7) △HEF 及△GFE 中, $\overline{HF} = \overline{GE} , \overline{HE} = \overline{GF} , \overline{EF} = \overline{FE} \circ$	如圖 3.2-11 由(3)&(6)已證 & 共同邊
$(8) \triangle HEF \cong \triangle GFE \circ$	由(7) S.S.S.三角形全等定理
$(9) \angle 1 = \angle 2 , \angle 3 = \angle 4 \circ$	對應角相等

例題 3.2-3:

如圖 2.3-12, L₁//L₂, L 為截線, ∠3=80°, 則:

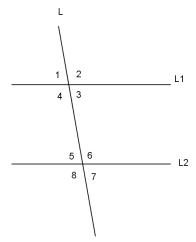


圖 3.2-12

想法:一截線與兩平行線相交所造成的一組內錯角相等

	理由
(1) ∠5 與∠3 互為內錯角	已知L為截線
(2) $\angle 5 = \angle 3 = 80^{\circ}$	已知 L ₁ //L ₂ ·內錯角相等 & ∠3=80°
$(3) \angle 6 + \angle 5 = 180^{\circ}$	∠5+∠6 為平角 180°
$(4) \ \angle 6 = 180^{\circ} - 80^{\circ} = 100^{\circ}$	由(3) 等量減法公理 & 由(2) ∠5=80° 已證

例題 3.2-4:

如圖 3.2-13, L₁//L₂, L 為截線, 求:

- $(1) x = \underline{\hspace{1cm}} \circ$

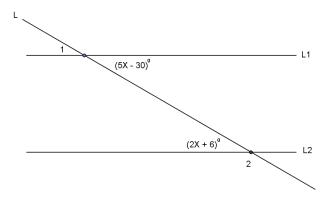


圖 3.2-13

想法:一截線與兩平行線相交所造成的一組內錯角相等 解:

敘述	理由
$(1) (5x-30)^{\circ} = (2x+6)^{\circ}$	已知 L ₁ //L ₂ & 內錯角相等
(2) $x = 12$	由(1) 解一元一次方程式
$(3) \angle 1 = (5x - 30)^{\circ} = 30^{\circ}$	對頂角相等 & 由(2) x=12 已證
$(4) \ \angle 2 = 180^{\circ} - (2x+6)^{\circ} = 150^{\circ}$	∠2 與(2x+6)°互補 & 由(2) x=12 已證

例題 3.2-5:

如圖 3.2-14 ,已知 $L_1 /\!/ L_2$,若 $\angle 1 \!=\! \angle 2$, $\angle 4 \!=\! \angle 5$,則:

- (1) ∠1 與 ∠5 是否相等?
- (2)∠3 與∠6 是否相等?

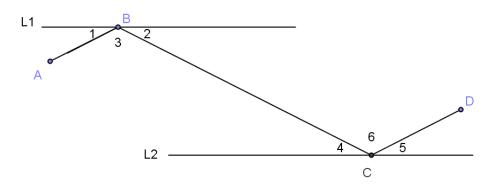


圖 3.2-14

想法:一截線與兩平行線相交所造成的一組內錯角相等

敘述	理由
$(1) \angle 2 = \angle 4$	L ₁ //L ₂ ·內錯角相等
(2) $\angle 1 = \angle 2 = \angle 4 = \angle 5$	已知∠1=∠2,∠4=∠5 & (1)遞移律
$(3) \angle 1 = \angle 5$	由(2)
$(4) \angle 1 + \angle 2 = \angle 4 + \angle 5$	由(1)式 + (3)式
(5) $\angle 3 = 180^{\circ} - (\angle 1 + \angle 2)$	$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$
(6) $\angle 6 = 180^{\circ} - (\angle 4 + \angle 5)$	$\angle 4 + \angle 5 + \angle 6 = 180^{\circ}$
$(7) \ \angle 3 = \angle 6$	由(4) & (5) & (6)

有了平行線的內錯角相等的定理,我們可以很容易地證明平行線的外錯角相等,理由很簡單,內錯角和外錯角相等。

定理 3.2-5 平行線的外錯角相等定理

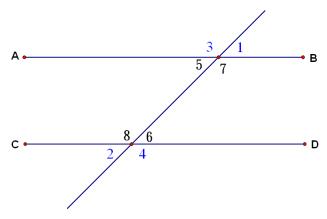


圖 3.2-15

已知:如圖 3.2-15 中, $\overline{AB} \parallel \overline{CD}$

求證:∠1=∠2,∠3=∠4。

想法: 兩線段互相平行, 則內錯角相等

證明:

	理由
(1) ∠5=∠6	已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等
(2) $\angle 5 = \angle 1$	如圖 3.2-15 所示,對頂角相等
$(3) \angle 6 = \angle 2$	如圖 3.2-15 所示,對頂角相等
(4) 所以∠1=∠2	將(2)&(3)代入(1)
(5) ∠7=∠8	已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等
(6) ∠7=∠3	如圖 3.2-15 所示,對頂角相等
(7) ∠8=∠4	如圖 3.2-15 所示,對頂角相等
(8) 所以∠3=∠4	將(6)&(7)代入(5)

Q. E. D.

根據以上的定理,我們還可以證明下面的定理。

定理 3.2-6 平行線的同位角相等定理

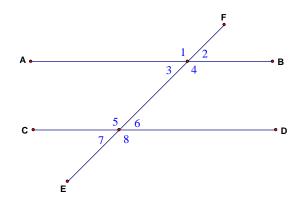


圖 3.2-16

已知:如圖 3.2-16 所示, $\overline{AB} \parallel \overline{CD}$

求證: ∠1= ∠5 , ∠3= ∠7 , ∠2= ∠6 , ∠4= ∠8

想法: 兩線段互相平行, 則內錯角相等

證明:

	理由
$(1) \ \angle 3 = \angle 6$	已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等
$(2) \angle 3 = \angle 2$	如圖 3.2-16 所示,對頂角相等
(3) 所以 ∠2= ∠6	由(1)&(2)遞移律
(4) 同理可證∠1=∠5, ∠3=∠7, ∠4=∠8	由(1)&(2)&(3)
	0 E D

Q. E. D.

例題 3.2-6:

如圖 3.2-17 , $L_1 \parallel L_2$, M 是 L_1 、 L_2 的一條截線,若 $\angle 1 \! = \! 50^\circ$,求 $\angle 2$ 。

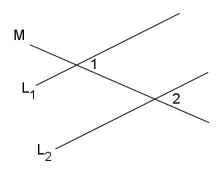


圖 3.2-17

想法:已知一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等

	理由
(1) ∠1 的同位角為∠2	已知 M 是 L ₁ 、L ₂ 的一條截線
$(2) \angle 2 = \angle 1$	已知 L ₁ L ₂ & 同位角相等
$(3) \angle 2 = 50^{\circ}$	由(2) & 已知∠1=50°

例題 3.2-7:

小明觀察百葉窗的結構,發現各葉片是互相平行,且中央軸線是一條貫穿各葉片的直線。圖 3.2-18 是百葉窗側面的部分示意圖,已知 $\angle 1=65^\circ$,求 $\angle 2$ 。

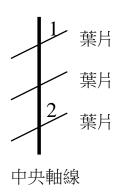


圖 3.2-18

想法:已知一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等

	理由
(1) $\angle 1$ 的同位角為 $\angle 2$	中央軸線是葉片的截線
$(2) \angle 2 = \angle 1$	各葉片互相平行,同位角相等
$(3) \angle 2 = 65^{\circ}$	由(2) & ∠1=65°

例題 3.2-8:

如圖 3.2-19, $L_1 \parallel L_2$,M 是 L_1 、 L_2 的一條截線, $\angle 1$ = 31°,求 $\angle 2$ 。

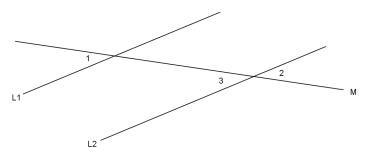


圖 3.2-19

想法:已知一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等

敘述	理由
(1) ∠1 的同位角為∠3	M是L ₁ 、L ₂ 的一條截線
$(2) \angle 3 = \angle 1$	M 是 $L_1 \setminus L_2$ 的一條截線 $L_1 \parallel L_2$,同位角相等 $\mathbf{d}(2)$ & $\angle 1 = 31^\circ$
(3) ∠3=31°	由(2) & ∠1=31°
(4) ∠2=∠3=31°	對頂角相等
(5) ∠2=31°	由(4)

例題 3.2-9:

如圖 3.2-20,一棵原本筆直的椰子樹遭雷擊斷裂成三段,頭尾兩段剛好互相平行,已知 $\angle 1 = 120^{\circ}$,求:

- (1) $\angle 2 \circ$
- (2) 樹頂從 P 點到 Q 點共轉了幾度?

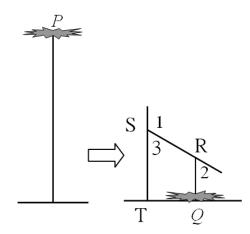


圖 3.2-20

想法:已知一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等

敘述	理由
(1) ∠2的同位角為∠3	\overline{SR} 是 \overline{ST} 與 \overline{RQ} 的一條截線
$(2) \angle 3 = \angle 2$	\overline{ST} 與 \overline{RQ} 互相平行,同位角相等
$(3) \angle 3 = 180^{\circ} - \angle 1$	$\angle 3 + \angle 1 = 180^{\circ}$
$(4) \ \angle 3 = 180^{\circ} - 120^{\circ} = 60^{\circ}$	由(3) & ∠1=120°
$(5) \angle 2 = \angle 3 = 60^{\circ}$	由(2) & (4)
(6) $\angle 1 + \angle 2 = 120^{\circ} + 60^{\circ} = 180^{\circ}$	樹頂從 P 點到 Q 點共轉了∠1+∠2

例題 3.2-10:

如圖 3.2-21 , $L_1 \parallel L_2$, M 及 N 都是 L_1 、 L_2 的截線 ,且交點在 L_1 上, $\angle 1$ = $\angle 2$, $\angle 3$ = $\angle 4$,求 $\angle 4$ 。

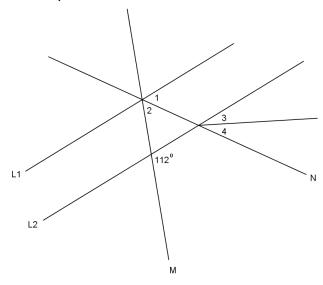


圖 3.2-21

想法:已知一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等

敘述	理由
(1) ∠1 的同位角為∠3+∠4	N 是 L ₁ 、L ₂ 的一條截線
$(2) \angle 1 = \angle 3 + \angle 4$	$L_1 \parallel L_2$,同位角相等
(3) ∠1+∠2 的同位角為 112°	M 是 L ₁ 、L ₂ 的一條截線
(4) $\angle 1 + \angle 2 = 112^{\circ}$	$L_1 \parallel L_2$,同位角相等
$(5) \angle 1 = \angle 2 = 56^{\circ}$	由(4) & ∠1=∠2
(6) $\angle 3 + \angle 4 = \angle 1 = 56^{\circ}$	由(2) & (5)
$(7) \angle 4 = \angle 3 = 28^{\circ}$	由(6) & ∠3=∠4

例題 3.2-11:

如圖 3.2-22 , $L_1 \parallel L_2$, $L_3 \parallel L_4$, 則:

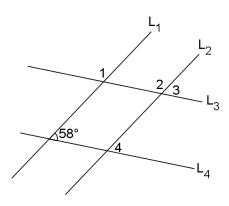


圖 3.2-22

想法:已知一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等

	理由
(1) ∠4=58°	$L_1 \parallel L_2$,同位角相等
(2) $\angle 3 = \angle 4 = 58^{\circ}$	L ₃ L ₄ ,同位角相等 &∠4=58°
(3) $\angle 2 = 180^{\circ} - \angle 3$	∠3 與∠2 互補 , ∠3+∠2=180°
(4) $\angle 2 = 180^{\circ} - \angle 3 = 122^{\circ}$	由(3) & ∠3=58°
$(5) \angle 1 = \angle 2 = 122^{\circ}$	L ₁ L ₂ ,同位角相等 &∠2=122°

例題 3.2-12:

已知:如圖 3.2-23 所示, $\overline{AD} = \overline{AE}$, $\overline{DE} \parallel \overline{BC}$ 。

證明:△ABC 為等腰三角形。

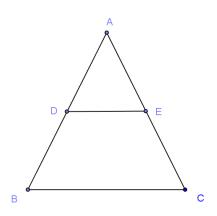


圖 3.2-23

想法:(1) 兩底角相等為等腰三角形

- (2) 已知一截線與兩平行線相交,則:
 - 1. 內錯角相等
 - 2. 同位角相等

證明:

敘述	理由
(1) △ADE 為等腰三角形	$\overline{AD} = \overline{AE}$
$(2) \angle ADE = \angle AED$	等腰三角形兩底角相等
$(3) \angle ADE = \angle B$	$\overline{DE} \parallel \overline{BC}$,同位角相等
$(4) \angle AED = \angle C$	$\overline{DE} \parallel \overline{BC}$,同位角相等
$(5) \angle B = \angle C$	由(2)&(3)&(4)
(6) △ABC 為等腰三角形	 ∠B=∠C,兩底角相等為等腰三角形
	Q.E.D.

定理 3.2-7 平行線的同側內角互為補角定理

一線與兩平行線相交,其同側的兩內角會互為補角。

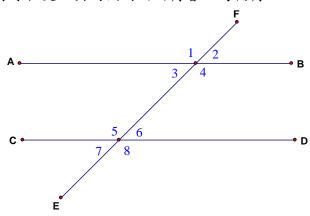


圖 3.2-24

已知:圖 3.2-24 中, $\overline{AB} \parallel \overline{CD}$

求證:∠3+∠5=180°,∠4+∠6=180°

想法一: 兩線段互相平行, 則內錯角相等

證明一:

<u></u>	理由
(1) ∠6=∠3	已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等
(2) $\angle 5 + \angle 6 = 180^{\circ}$	如圖 $3.2-24$ 所示, \overline{CD} 為一線段
(3) 所以∠5+∠3=180°	將(1) ∠6=∠3 代入(2)
(4) 同理可證∠4+∠6=180°	由(1)&(2)&(3)

Q.E.D.

想法二: 兩線段互相平行, 則同位角相等

證明二:

	理由
$(1) \ \angle 1 = \angle 5$	已知 $\overline{AB} \parallel \overline{CD}$,同位角相等
(2) $\angle 1 + \angle 3 = 180^{\circ}$	如圖 3.2-24 所示, EF為一線段
(3) 所以 ∠5+∠3=180°	將(1) ∠1=∠5 代入(2)
(4) 同理可證∠4+∠6=180°	由(1)&(2)&(3)

Q.E.D.

例題 3.2-13:

圖 3.2-25 是美工刀的一部分。<u>小美</u>測量其刀尖的角度 $\angle 1=62^{\circ}$,若刀片上下兩側互相平行,求 $\angle 2$ 。

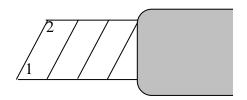


圖 3.2-25

想法:一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補

敘述	理由
(1) ∠2 與∠1 互為同側內角	如圖 3.2-25 所示
(2) $\angle 2 + \angle 1 = 180^{\circ}$	刀片上下兩側互相平行,同側內角互補
(3) $\angle 2 = 180^{\circ} - \angle 1$	由(2)
$(4) \angle 2 = 118^{\circ}$	由(3) & ∠1=62°

例題 3.2-14:

如圖 3.2-26, $L_1 \parallel L_2$,M 是 L_1 、 L_2 的一條截線,若 $\angle 1 = 47^\circ$,求 $\angle 2$ 、 $\angle 3$ 。

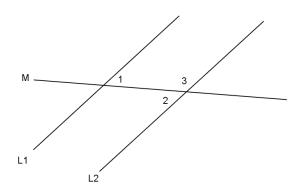


圖 3.2-26

想法:一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補

	理由
(1) ∠3 與∠1 互為同側內角	M是L1、L2的一條截線
(2) $\angle 3 + \angle 1 = 180^{\circ}$	$L_1 \parallel L_2$,同側內角互補
(3) $\angle 3 = 180^{\circ} - \angle 1$	由(2)
$(4) \ \angle 3 = 180^{\circ} - 47^{\circ} = 133^{\circ}$	由(3) & ∠1=47°
(5) ∠2 與∠1 互為內錯角	M 是 L ₁ 、L ₂ 的一條截線
(6) ∠2=∠1=47°	L ₁ L ₂ ,內錯角相等 & ∠1=47°

例題 3.2-15:

如圖 3.2-27, $L_1 \parallel L_2$,M 是 L_1 、 L_2 的一條截線, $\angle 1 = 123^{\circ}$,求 $\angle 2$ 。

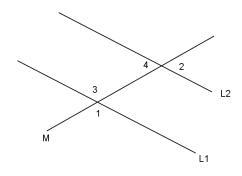


圖 3.2-27

想法:一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補

解:

	理由
$(1) \angle 3 = \angle 1 = 123^{\circ}$	對頂角相等
(2) $\angle 3 + \angle 4 = 180^{\circ}$	$L_1 \parallel L_2$,同側內角互補
(3) $\angle 4 = 180^{\circ} - \angle 3 = 180^{\circ} - \angle 1$	由(2)&(1)
(4) $\angle 4 = 180^{\circ} - 123^{\circ} = 57^{\circ}$	由(3)&(1)
$(5) \angle 2 = \angle 4 = 57^{\circ}$	對頂角相等

定理 3.2-8 內錯角相等的兩線平行定理

一截線與兩直線相交,所造成的任一組內錯角相等,則這兩線平行。

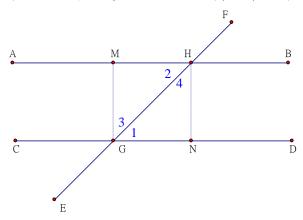


圖 3.2-28

已知:如圖 3.2-28 中, \overline{AB} 及 \overline{CD} 兩直線與 \overline{EF} 相交,且 $\angle 1$ = $\angle 2$ 。

求證: $\overline{AB} \parallel \overline{CD}$

想法: 利用垂直於同一直線的兩線平行定理。 證明:	
金· 	理由
(1) 過 G 畫 \overline{GM} 垂直 \overline{CD} ,交 \overline{AB} 於 M。	通過直線上一點,只有一條直線與 此直線垂直
(2) 過 H 畫 \overline{HN} 垂直 \overline{CD} ,交 \overline{CD} 於 N。	通過直線外上一點,只有一條直線 與此直線垂直
$(3) ∵ \overline{GM} \bot \overline{CD} \bot \overline{NH} \bot \overline{CD} ,$ ∴ $\overline{GM} \parallel \overline{NH} \circ$	垂直於同一直線的兩線平行定理
$(4) \ \angle 3 = \angle 4$	平行線的內錯角相等
$(5) \angle 1 = \angle 2$	已知
(6) $\angle 1 + \angle 3 = \angle 2 + \angle 4$	由(4) & (5) 等量相加
$(7) \angle 1 + \angle 3 = 90^{\circ}$	由 (1) , \overline{GM} \perp \overline{CD}
$(8) \angle 2 + \angle 4 = 90^{\circ}$	由(6) & (7)
$(9) \ \overline{NH} \perp \overline{AB}$	由(8) & 垂直定義
(10) \overline{NH} \perp \overline{CD} 且 \overline{NH} \perp \overline{AB}	由(2) & (9)
$(11) \overline{AB} \parallel \overline{CD}$	垂直於同一直線的兩線平行定理

例題 3.2-16:

如圖 3.2-29,<u>小惠</u>利用直尺及麥克筆,在海報紙上寫了一個很大的英文字母「N」,她量得 $\angle 1$ 和 $\angle 2$ 的度數相同,則這個「N」字的左右兩邊是否平行?為什麼?

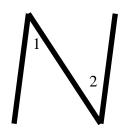


圖 3.2-29

想法:內錯角相等的兩線平行

解:

	理由
(1) 這個「N」字的左右兩邊互相平行	∠1=∠2,內錯角相等的兩線平行定理

有了內錯角相等的兩線平行定理之後,很容易就可以證明下面三個定理。

定理 3.2-9 外錯角相等的兩線平行定理

一截線與兩直線相交,所造成的任一組外錯角相等,則這兩線平行。

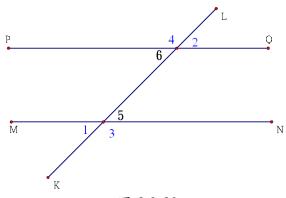


圖 3.2-30

已知:如圖 3.2-30 中, ∠1=∠2 或 ∠3=∠4

求證: $\overline{MN} \parallel \overline{PQ}$

想法:利用內錯角相等,則兩線互相平行的定理

證明:

	理由
(1) ∠5 與∠6 為一組內錯角	如 3.2-30 圖, \overline{KL} 為 \overline{MN} 與 \overline{PQ} 的截線
$(2) \angle 5 = \angle 1$	如圖 3.2-30 所示,對頂角相等
$(3) \angle 6 = \angle 2$	如圖 3.2-30 所示,對頂角相等
$(4) \ \angle 5 = \angle 1 = \angle 2 = \angle 6$	由(2) & (3) & 已知∠1=∠2
(5) 所以 ∠5= ∠6	由(4)
(6) 所以 $\overline{MN} \parallel \overline{PQ}$	由(5) ∠5=∠6 已證 & 內錯角相等,兩直線互相平行定理
(7) 同理可證,若 $\angle 3$ = $\angle 4$,則 $\overline{MN} \parallel \overline{PQ}$	由(1)~(6)
	OED

Q.E.D.

定理 3.2-10 同位角相等的兩線平行定理

一截線與兩直線相交,所造成的任一組同位角相等,則這兩線平行。

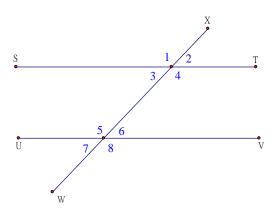


圖 3.2-31

已知:如圖 3.2-31 中, $\angle 1=\angle 5$ 或 $\angle 3=\angle 7$ 或 $\angle 2=\angle 6$ 或 $\angle 4=\angle 8$

求證: $\overline{ST} \parallel \overline{UV}$

想法:利用內錯角相等,則兩線互相平行的定理

證明:

叙述	理由
(1) ∠4 與∠5 為一組內錯角	如圖 $3.2-31$, \overline{XW} 為 \overline{ST} 與 \overline{UV} 的截線
(2) $\angle 4 = \angle 1$	如圖 3.2-31 所示,對頂角相等
$(3) \angle 4 = \angle 1 = \angle 5$	由(2) & 已知∠1=∠5
(4) 所以 ∠4= ∠5	由(3)
(5) 所以 $\overline{ST} \parallel \overline{UV}$	由(4) ∠4=∠5 已證 & 內錯角相等,兩直線互相平行定理
(6) 同理可證,若 $\angle 3$ = $\angle 7$ 或 $\angle 2$ = $\angle 6$ 或 $\angle 4$ = $\angle 8$,則 $\overline{ST} \parallel \overline{UV}$	由(1)~(5)

Q.E.D.

例題 3.2-17:

如圖 3.2-32,M 為 L_1 、 L_2 的截線,且 $\angle 1=\angle 2=105^\circ$,則 L_1 、 L_2 是否平行?

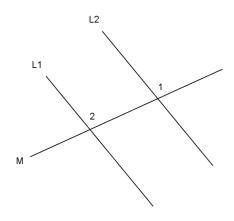


圖 3.2-32

想法:已知判斷兩直線平行的方法有:

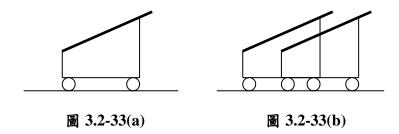
- 1. 內錯角相等的兩線平行
- 2. 同位角相等的兩線平行

解:

敘述	理由
(1) $L_1 \parallel L_2$	∠1=∠2,同位角相等的兩線平行定理

例題 3.2-18:

圖 3.2-33(a)為量販店裡購物手推車的側面簡圖。設粗線段稱為「頂邊」, 圖 3.2-33(b)為小華將兩台相同的手推車收納在一起的情形,此時兩條「頂邊」 是否平行?



想法:已知判斷兩直線平行的方法有:

- 1. 內錯角相等的兩線平行
- 2. 同位角相等的兩線平行

解:

敘述 理由 (1) 作 $M \parallel \overline{CH}$ 分別交兩頂邊於 $A \times B$ 兩點,如圖 3.2-33(c)所示 $_{\rm M}$ В G \mathbf{H} 圖 3.2-33(c) 圖 3.2-33 為兩台相同手推車

- (2) ∠ACH=∠BDH 且 $\angle CAE = \angle DBF$
- (3) $\angle ACH + \angle CAG = 180^{\circ}$
- $(4) \angle CAG = 180^{\circ} \angle ACH$
- $(5) \angle BDH + \angle DBG = 180^{\circ}$
- (6) $\angle DBG = 180^{\circ} \angle BDH$ $=180^{\circ} - \angle ACH$ $= \angle CAG$
- $(7) \angle CAE = \angle CAG + \angle 1$
- (8) $\angle DBF = \angle DBG + \angle 2$
- $(9) \angle CAG + \angle 1 = \angle DBG + \angle 2$
- 由(1) M $\parallel \overline{CH}$ & 同側內角互補 由(3) 等量減法公理 由(1) M $\parallel \overline{CH}$ & 同側內角互補 由(5) 等量減法公理 由(2) ∠BDH=∠ACH 代換 由(4) ∠CAG=180°-∠ACH 代換 如圖 3.2-33(c) 全量等於分量之和 如圖 3.2-33(c) 全量等於分量之和 \pm (2) \angle CAE= \angle DBF & (7)、(8)

 $(10) \angle CAG + \angle 1 = \angle CAG + \angle 2$

由(9) & (6) ∠DBG=∠CAG 代換

 $(11) \angle 1 = \angle 2$

由(10) 等量減法公理

(12) 兩條頂邊互相平行

由(11) $\angle 1 = \angle 2$,同位角相等的兩線平 行定理

定理 3.2-11 同側內角互補的兩線平行定理

一截線與兩直線相交,所造成的任一組同側內角互補,則這兩線平行。

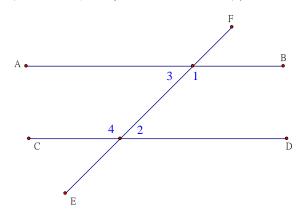


圖 3.2-34

已知:如圖 3.2-34 中, $\angle 1+\angle 2=180^\circ$ 或 $\angle 3+\angle 4=180^\circ$

求證: $\overline{AB} \parallel \overline{CD}$

想法:利用內錯角相等,則兩線互相平行的定理

證明:

	理由
(1) ∠1 與∠4 為一組內錯角	如圖 $3.2-34$, \overline{EF} 為 \overline{AB} 與 \overline{CD} 的截線
$(2) \angle 2 + \angle 4 = 180^{\circ}$	如圖 $3.2-34$ 所示, \overline{CD} 為一線段
$(3) \angle 1 + \angle 2 = 180^{\circ}$	已知∠1+∠2=180°
$(4) \angle 2 + \angle 4 = \angle 1 + \angle 2$	由(2) & (3)遞移律
(5) 所以 ∠4= ∠1	由(4) 等量減法公理
(6) 所以 $\overline{AB} \parallel \overline{CD}$	由(5) ∠4=∠1 已證 & 內錯角相等,兩直線互相平行定理
(7) 同理可證,若 $\angle 3+ \angle 4=180^\circ$,則 $\overline{AB} \parallel \overline{CD}$	由(1)~(6)

Q.E.D.

例題 3.2-19:

如圖 3.2-35,L 為 L_1 、 L_2 的截線,且 $\angle 1$ = 41°, $\angle 2$ = 141°,則 L_1 與 L_2 是 否平行?

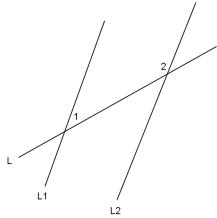


圖 3.2-35

想法:判斷兩直線平行的方法有:

- 1. 內錯角相等的兩線平行
- 2. 同位角相等的兩線平行
- 3. 同側內角互補的兩線平行

解:

叙述	理由
(1) $\angle 1 + \angle 2 = 182^{\circ}$	已知 \(\alpha \) 1 = 41° & \(\alpha \) 2 = 141°
(2) L ₁ 與 L ₂ 不平行	同側內角不互補,則 L ₁ 與 L ₂ 不平行

例題 3.2-20:

如圖 3.2-36,直角 \triangle ABC 中, \angle C=90°,L 為 \overline{BC} 的中垂線。試檢查 L 與 \overline{AC} 是否互相平行。

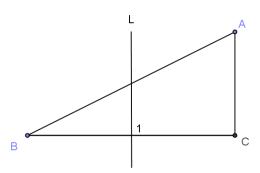


圖 3.2-36

想法:判斷兩直線平行的方法有:

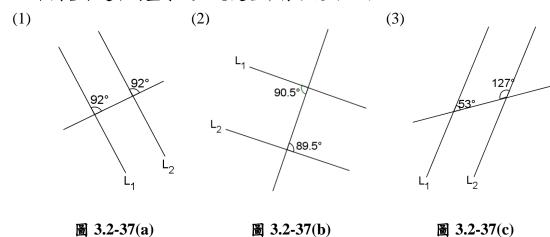
- 1. 內錯角相等的兩線平行
- 2. 同位角相等的兩線平行
- 3. 同側內角互補的兩線平行

解:

敘述	理由
(1) ∠1=90°	L 為BC的中垂線
(2) ∠C=90°	已知直角△ABC 中, ∠C=90°
(3) $\angle 1 + \angle C = 180^{\circ}$	由(1) & (2)
(4) L $\parallel \overline{AC}$	∠1+∠C=180°,同側內角互補的兩線平行定理

例題 3.2-21:

下列各小題中的直線 L1、L2 是否平行? 說明理由。



想法:判斷兩直線平行的方法有:

- 1. 內錯角相等的兩線平行
- 2. 同位角相等的兩線平行
- 3. 同側內角互補的兩線平行

解:

敘述	理由
(1) 圖 3.2-37(a)中, $L_1 \parallel L_2$	92°=92°,同位角相等的兩線平行定理
(2) 圖 3.2-37(b)中,L ₁ 與 L ₂ 不平行	90.5°≠89.5°,內錯角不相等
(3) 圖 3.2-37(c)中, $L_1 \parallel L_2$	53°+127°=180°,同側內角互補的兩線互相平行

在練習完內錯角、同位角、同側內角的基本題型之後,接下來,讓我們來練習一些變化的題型。

例題 3.2-22:

已知:圖 3.2-38 中, $\overline{AB} \parallel \overline{CD}$, $\angle C = \angle D$,

試證:∠A=∠B。

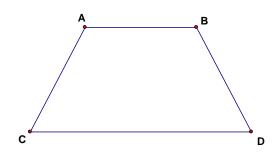


圖 3.2-38

想法:一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補

證明:

叙述	理由
$(1) \angle A + \angle C = 180^{\circ}$	已知 $\overline{AB} \parallel \overline{CD}$,同側內角互補
$(2) \angle A = 180^{\circ} - \angle C$	由(1) 等量減法公理
$(3) \angle B + \angle D = 180^{\circ}$	已知 $\overline{AB} \parallel \overline{CD}$,同側內角互補
$(4) \angle B = 180^{\circ} - \angle D$	由(3) 等量減法公理
$(5) \angle A = 180^{\circ} - \angle C = 180^{\circ} - \angle D = \angle B$	由(2) & (4) & 已知∠C=∠D

例題 3.2-23:

已知:圖 3.2-39 中, $\overline{AB} \parallel \overline{CD}$, $\overline{AD} \parallel \overline{BC}$, 試證: $\angle 1 + \angle 2 + \angle 3 = \angle 3 + \angle 4 + \angle 5$ 。

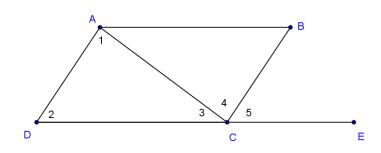


圖 3.2-39

想法:一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補

證明:

	理由
(1) ∠2=∠5	已知 \overline{AB} \parallel \overline{CD} , $\angle 2$ 與 $\angle 5$ 為同位角 $\&$ 同位角相等
$(2) \angle 1 = \angle 4$	已知 $\overline{AD} \parallel \overline{BC}$, $\angle 1$ 與 $\angle 4$ 為內錯角 $\&$ 內錯角相等
$(3) \angle 1 + \angle 2 = \angle 4 + \angle 5$	由(1)式 + (2)式
(4) $\angle 1 + \angle 2 + \angle 3 = \angle 3 + \angle 4 + \angle 5$	由(3) & 等量加法公理 (等式兩邊同加 / 3)

由例題 3.2-23 中,我們可以得知另一個重要的定理:(**三角形三內角和 180°**) $\angle 1+\angle 2+\angle 3$ 為 \triangle ACD 的三個內角和,且 $\angle 3+\angle 4+\angle 5$ 為平角 180°, 所以我們得知 \triangle ACD 的三個內角和 $\angle 1+\angle 2+\angle 3=\angle 3+\angle 4+\angle 5=180°$ 。 (三角形三內角和 180°的定理在第四章會再介紹一次)

例題 3.2-24:

已知:圖 3.2-40 中, $\overline{AB} \parallel \overline{CD}$, $\overline{AC} \parallel \overline{BD}$,

試證: $\overline{AB} = \overline{CD}$, $\overline{AC} = \overline{BD}$ 。

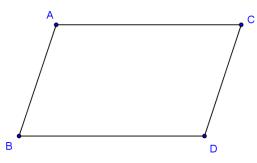


圖 3.2-40

想法:(1) 利用兩全等三角形對應邊相等性質證明兩線段相等

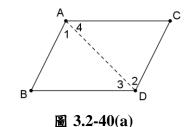
- (2) 一截線與兩平行線相交,則:
 - 1. 內錯角相等
 - 2. 同位角相等
 - 3. 同側內角互補
- (3) 判斷兩個三角形全等的方法有:
 - 1. 兩邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理
 - 2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理
 - 3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

證明:

敘述

理由

(1) 連接 A 點與 D 點, 如圖 3.2-40(a)所示



(2) △DBA 與△ACD 中

$$\angle 1 = \angle 2$$

$$\overline{AD} = \overline{DA}$$

 $\angle 3 = \angle 4$

- $(3) \triangle DBA \cong \triangle ACD$
- (4) $\overline{AB} = \overline{DC}$, $\overline{AC} = \overline{DB}$

如圖 3.2-40(a)所示

作圖,兩點決定一直線

已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等

共同邊

已知 $\overline{AC} \parallel \overline{BD}$,內錯角相等

- 由(2) A.S.A.三角形全等定理
- 由(3) 對應邊相等

例題 3.2-25:

已知:圖 3.2-41 中, $\overline{AB} \parallel \overline{CD}$, $\overline{AC} \parallel \overline{BD}$,

試證: $\overline{AE} = \overline{DE}$, $\overline{BE} = \overline{CE}$ 。

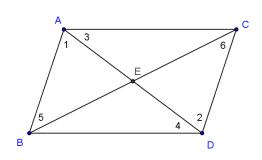


圖 3.2-41

想法:(1) 一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補
- (2) 判斷兩個三角形全等的方法有:
 - 1. 兩邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理
 - 2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理
 - 3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

證明:

	理由
(1) \triangle DBA 與 \triangle ACD 中	如圖 $3.2-41$ 所示已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等共同邊已知 $\overline{AC} \parallel \overline{BD}$,內錯角相等
$(2) \triangle DBA \cong \triangle ACD$	由(1) A.S.A.三角形全等定理
$(3) \ \overline{AB} = \overline{CD} , \ \overline{AC} = \overline{BD}$	由(2) 對應邊相等
(4) \triangle ABE 與 \triangle DCE 中	如圖 $3.2-41$ 所示已知 $\overline{AB}\parallel\overline{CD}$,內錯角相等由 (3) 已證已知 $\overline{AB}\parallel\overline{CD}$,內錯角相等
$(5) \triangle ABE \cong \triangle DCE$	由(4) A.S.A.三角形全等定理
(6) $\overline{AE} = \overline{DE}$, $\overline{BE} = \overline{CE}$	由(5) 對應邊相等

例題 3.2-26:

已知:圖 3.2-42 中, $\overline{AB} \parallel \overline{CD}$, $\overline{AD} \parallel \overline{BC}$, $\overline{AE} = \overline{BE}$, $\overline{AF} = \overline{FC}$

試證: $\overline{EF} = \overline{GF}$ 。

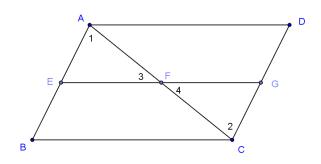


圖 3.2-42

想法:(1) 一截線與兩平行線相交,則:

- 1. 內錯角相等
- 2. 同位角相等
- 3. 同側內角互補
- (2) 判斷兩個三角形全等的方法有:
 - 1. 雨邊夾一角三角形全等定理,又稱 S.A.S.三角形全等定理
 - 2. 兩角夾一邊三角形全等定理,又稱 A.S.A.三角形全等定理
 - 3. 三邊相等三角形全等定理,又稱 S.S.S.三角形全等定理

證明:

<u></u>	理由
(1) \triangle AEF 與 \triangle CGF 中	如圖 $3.2-42$ 所示 已知 $\overline{AB} \parallel \overline{CD}$,內錯角相等 已知 $\overline{AF} = \overline{FC}$ 對頂角相等
$(2) \triangle AEF \cong \triangle CGF$	由(1) A.S.A.三角形全等定理
$(3) \ \overline{EF} = \overline{GF}$	由(2) 對應邊相等

習題 3.2

習題 3.2-1:

如圖 3.2-43 , L 是 L_1 和 L_2 的截線 , 則:

- (1)∠1 的同位角為 _____。
- (2) ∠3 的同側內角為 _____。
- (3) ∠4 的內錯角為 _____。

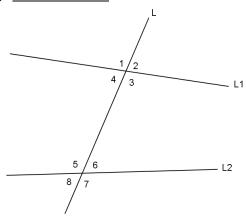


圖 3.2-43

習題 3.2-2:

如圖 3.2-44, L₁//L₂, L 為截線, ∠4=100°, 則:

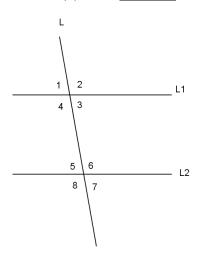


圖 3.2-44

習題 3.2-3:

如圖 3.2-45, L₁//L₂, L 為截線, 求:

 $(1) x = \underline{\hspace{1cm}} \circ$

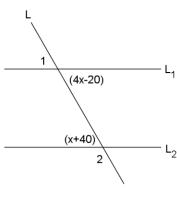
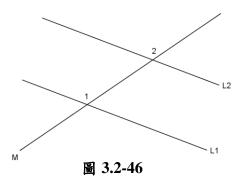


圖 3.2-45

習題 3.2-4:

如圖 3.2-46, 已知 $L_1 \parallel L_2$, M 是 $L_1 \setminus L_2$ 的一條截線, 若 $\angle 1 = 125^\circ$, 求 $\angle 2$ 。



習題 3.2-5:

如圖 3.2-47, $\overline{AD} \parallel \overline{BC} \parallel \overline{EF} \parallel \overline{PQ}$ 。連接 \overline{AQ} ,且 $\angle 1 = 60^{\circ}$,求:

- (1) ∠2 至∠8 各截角的度數。
- (2) 同側內角 ∠3 與 ∠5 的和。

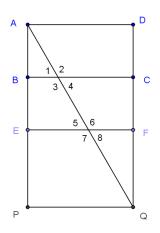


圖 3.2-47

習題 3.2-6:

如圖 3.2-48, $L_1 \parallel L_2$, $L_3 \parallel L_4$,則:

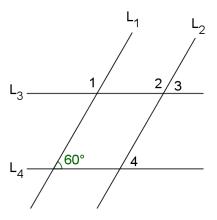


圖 3.2-48

習題 3.2-7:

如圖 3.2-49, $L_1 \parallel L_2$,M 是 L_1 、 L_2 的一條截線,若 $\angle 1$ = 135° ,求 $\angle 2$ 、 $\angle 3$ 。

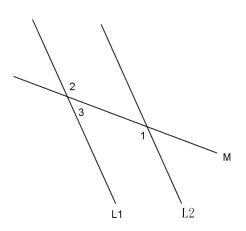


圖 3.2-49

習題 3.2-8:

如圖 3.2-50, $L_1 \parallel L_2$,M 是 L_1 和 L_2 的截線, $\angle 1=57^\circ$,則:

- (1) ∠2 和_______是同側內角。
- (2) ∠3 和________是同位角。

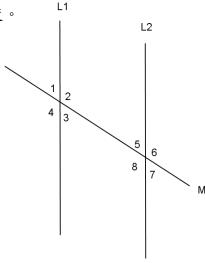


圖 3.2-50

習題 3.2-9:

如圖 3.2-51, $L_1 \parallel L_2 \parallel L_3$,L 為截線, $\angle 1=75^{\circ}$,則:

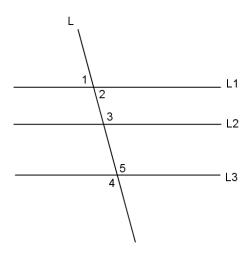


圖 3.2-51

習題 3.2-10

如圖 3.2-52,回答下列問題:

- (1) L₁ 和哪一條直線平行?____。
- (2) L₂和哪一條直線平行?____。

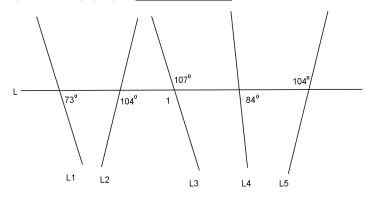


圖 3.2-52

習題 3.2-11

圖 3.2-53 中, $\overline{AB} \parallel \overline{CD}$, \overline{HE} 平分 \angle BEF, \overline{GF} 平分 \angle CFE,試證 $\overline{EH} \parallel \overline{GF}$ 。

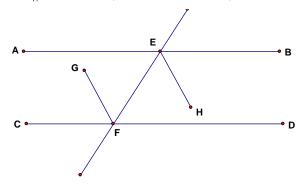


圖 3.2-53

習題 3.2-12

圖 3.2-54 中, $\overline{AB} \parallel \overline{A'B'}$, $\overline{CD} \parallel \overline{BD'}$,試證 $\angle ACD = \angle A'B'D'$ 。

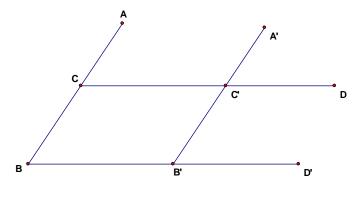


圖 3.2-54

習題 3.2-13

圖 3.2-55 中, $\overline{AB} \parallel \overline{CD}$, $\overline{AC} \parallel \overline{DE}$, $\overline{AB} = \overline{CD}$,試證 $\overline{AC} = \overline{DE}$ 。

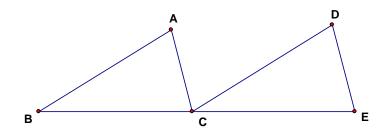


圖 3.2-55

習題 3.2-14

圖 3.2-56 中, $\overline{AB} \parallel \overline{CD}$, $\overline{AC} \parallel \overline{BD}$,試證 $\angle A = \angle D$, $\angle C = \angle B$ 。

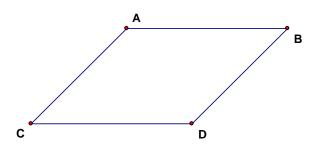


圖 3.2-56

3.3 節 對稱圖形

定義 3.3-1 線對稱圖形

若有一直線 L(不一定在圖形上),使圖形上的每一點在直線的對側與直線等 距離的位置都有一**對稱點**,則稱為**對稱直線 L 之圖形**或簡稱為**線對稱圖** 形,直線 L 為圖形的**對稱軸**。

若一個圖形是線對稱圖形,則沿著對稱軸對折,圖形會完全重疊。

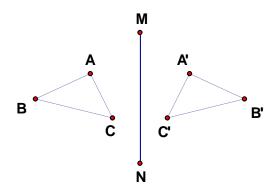


圖 3.3-1 對稱直線 MN 之線對稱圖形

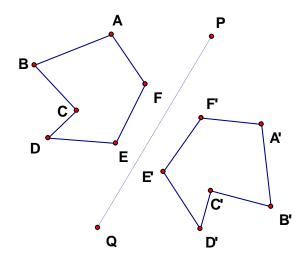


圖 3.3-2 對稱直線 \overline{PQ} 之線對稱圖形

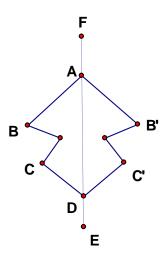


圖 3.3-3:此圖為對稱 \overline{EF} 之線對稱圖形。

常見之線對稱圖形有:正方形、長方形、等腰三角形、圓形,…等。

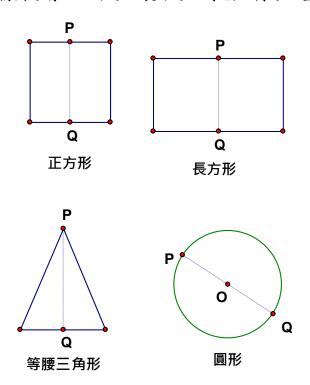


圖 3.3-4:圖中之各圖形都是以 \overline{PQ} 為對稱軸之線對稱圖形

平行四邊形並不是一個線對稱圖形,若以平行四邊形 ABCD 的兩對邊中點連線段 \overline{PQ} 為對稱軸,則對稱 \overline{PQ} 的圖形為另一平行四邊形 A`B`C`D`,圖形並沒有完全重疊,如圖 3.3-5 所示; 若以平行四邊形的對角線 \overline{AC} 為對稱軸,則平行四邊形 ABCD 對稱 \overline{AC} 的圖形為平行四邊形 AB`CD`,圖形並沒有完全重疊,如圖 3.3-6 所示;若以平行四邊形的對角線 \overline{BD} 為對稱軸,則平行四邊形 ABCD 對稱 \overline{BD} 的圖形為平行四邊形 A`BC`D,圖形並沒有完全重疊,如圖 3.3-7 所示。在平行四邊形上找不到對稱軸,可以延著對稱軸對折後,圖形會完全重疊,故平行四邊形不是一個線對稱圖形。

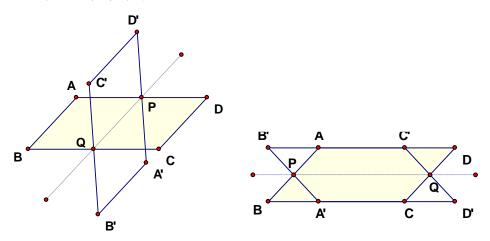


圖 3.3-5: 以平行四邊形兩對邊的中點連線段 \overline{PO} 為對稱軸之對稱圖形

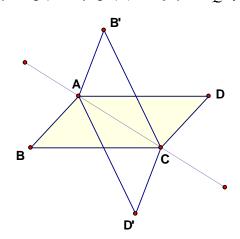


圖 3.3-6: 以平行四邊形的對角線 \overline{AC} 為對稱軸之對稱圖形

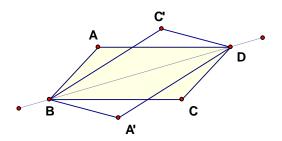


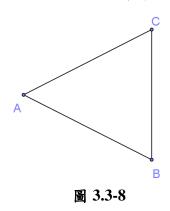
圖 3.3-7: 以平行四邊形的對角線 \overline{BD} 為對稱軸之對稱圖形

線對稱圖形之判斷要領

- 1. 先畫出線對稱圖形之**對稱軸**。 在圖上找出可能對稱的兩點,做**兩點連線的垂直平分線**,若圖為線對稱 圖形,則此線就是**對稱軸**。
- 2. 檢查圖形上的每一點在對稱軸之兩側等距離位置是否都有對稱點,若 有,則此圖形是線對稱圖形。
 - (若圖形可以拿起來對折,可以沿著對稱軸對折,檢查圖形是否會完全 重疊,若完全重疊,則是線對稱圖形。)

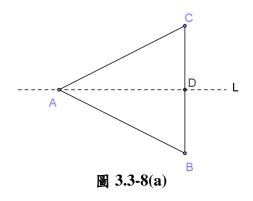
例題 3.3-1

如圖 3.3-8, \triangle ABC 是等腰三角形, $\overline{AB} = \overline{AC}$, \triangle ABC 是線對稱圖形嗎?如果是,畫出其對稱軸,並指出 B 點的對稱點為何?



想法:(1) 若一個圖形是線對稱圖形,則沿著對稱軸對折,圖形會完全重疊

(2) 點在對稱軸的對側與對稱軸等距離的點稱為此點的對稱點



解:

(1) 假設 L 為∠BAC 的角平分線, 如圖 3.3-8(a),則 L⊥*BC*且

敘述

 $\overline{BD} = \overline{CD}$

(2) <u>在△ABD</u> 與△ACD 中,

 $\overline{BD} = \overline{CD}$ $\angle B = \angle C$

 $\angle B = \angle C$ $\overline{AB} = \overline{AC}$

(3) $\triangle ABD \cong \triangle ACD$

(4) △ABC 為線對稱圖形, 且 L 為其對稱軸

(5) B 點的對稱點為 C 點

理由

已知 \triangle ABC 是等腰三角形, $\overline{AB} = \overline{AC}$ & 等腰三角形頂角平分線垂直平分底邊

如圖 3.3-8(a)所示 由(1) $\overline{BD} = \overline{CD}$ 已知 $\triangle ABC$ 是等腰三角形, $\overline{AB} = \overline{AC}$ 已知 $\overline{AB} = \overline{AC}$

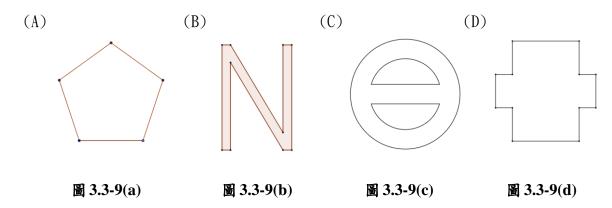
由(2) & 根據 S.A.S.三角形全等定理

由(3) & △ABC 沿著 L 對折,圖形會 完全重疊

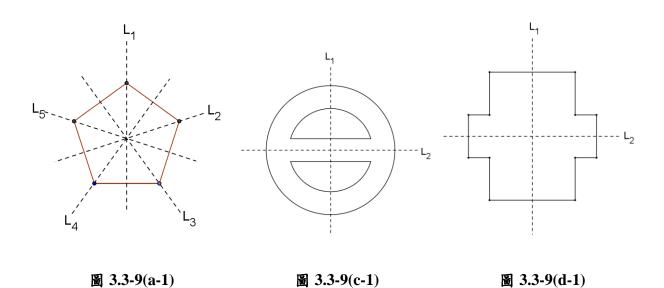
由(4) L 為其對稱軸 & (1) L $\perp \overline{BC}$ 且 $\overline{BD} = \overline{CD}$

例題 3.3-2

判別下列各圖形是否為線對稱圖形,並畫出其所有的對稱軸。



想法:若一個圖形是線對稱圖形,則沿著對稱軸對折,圖形會完全重疊



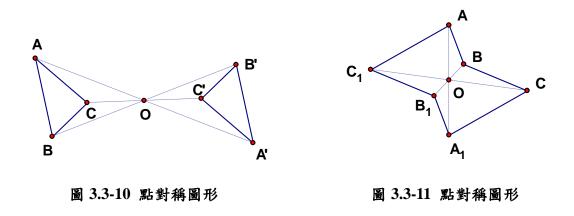
解:	
----	--

敘述	理由
(1) 選項(A)為線對稱圖形,如圖 3.3-9(a-1)	圖 3.3-9(a-1)中,分別沿著 L ₁ 、L ₂ 、
, L ₁ 、L ₂ 、L ₃ 、L ₄ 、L ₅ 為其對稱軸	L ₃ 、L ₄ 、L ₅ 對折,圖形完全重疊
(2) 選項(B)不是線對稱圖形	無對稱軸
(3) 選項(C)為線對稱圖形,如圖 3.3-9(c-1)	圖 3.3-9(c-1)中,分別沿著 L ₁ 、L ₂
, L ₁ 、L ₂ 為其對稱軸	對折,圖形完全重疊
(4) 選項(D)為線對稱圖形,如圖 3.3-9(d-1)	圖 3.3-9(d-1)中,分別沿著 L ₁ 、L ₂
, L ₁ 、L ₂ 為其對稱軸	對折,圖形完全重疊

定義 3.3-2 點對稱圖形

若有一點 O(不一定在圖上),使圖形上的每一點在與 O 點連線的對側上的等 距離的位置都有一點與之對稱,則叫此圖為對稱 O 點之點對稱圖形或稱簡 為點對稱圖形,叫 O 點為對稱圖形的「對稱中心」。

若一個圖形是點對稱圖形,則以**對稱中心**為旋轉中心,旋轉 180 度後,會 與原來圖形重合。



常見之點對點稱圖形有:正方形、長方形、平行四邊形、正六邊形、圓形,…等。

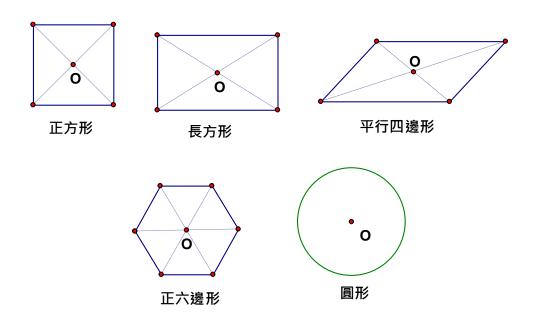


圖 3.3-12

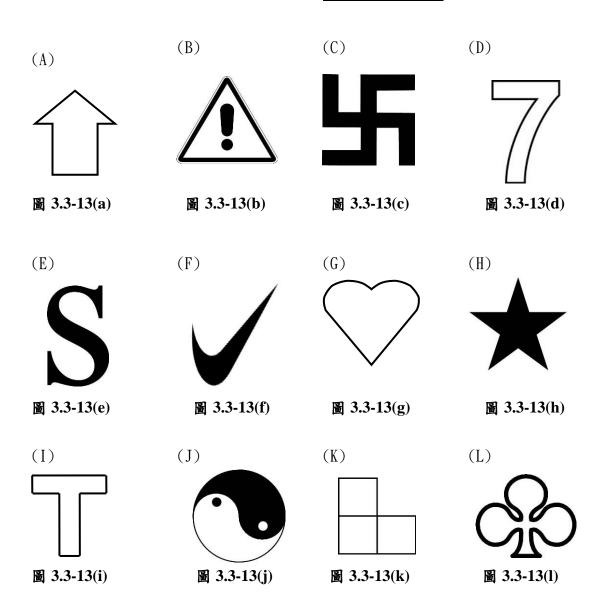
點對稱圖形之判斷要領

- 1. 先畫出點對稱圖形之**對稱中心**。 在圖上找出可能對稱的兩點,做**兩點連線的中點**,若圖形為點對稱圖 形,則此點就是**對稱中心**。
- 2. 檢查圖形上的每一點,在點與對稱中心連線之對側等距離位置是否都有 對稱點,若有,則此圖形是點對稱圖形。

習題 3.3

習題 3.3-1

下列各圖形中,哪些是線對稱圖形?_____

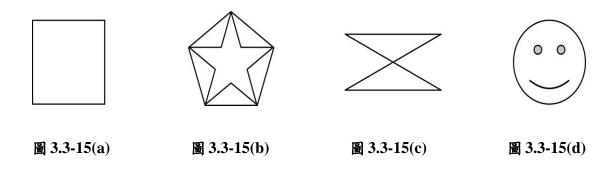


習題 3.3-2

下列各圖形哪一個的對稱軸超過一條?_____

習題 3.3-3

畫出下列圖形的所有對稱軸:

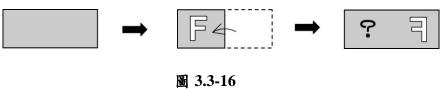


習題 3.3-4

直角三角形都是線對稱圖形嗎?哪一種直角三角形是線對稱圖形?

習題 3.3-5

如圖 3.3-16,將一張長方形色紙對摺後,剪出一個字母 ^[],則展開後的圖 形為下列何者?



本章重點

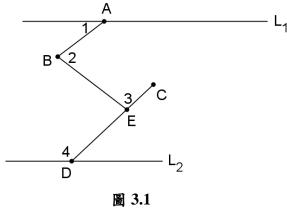
本章介紹直線與直線關係的兩個重要性質:垂直與平行。

- 1. 線段的垂直線性質。
- 2. 線段的垂直平分線性質。
- 3. 線上一點與線外一點的垂直線性質。
- 4. 定義線與線相交形成的各種角的名詞:內角、外角、同位角、內錯角、 外錯角、同側內角、同側外角等。
- 5. 平行線的相關性質:
 - (1) 同時垂直一直線的兩線平行。
 - (2) 平行線必同時垂直同一直線。
 - (3) 兩平行線間的距離處處相等。
 - (4) 平行線的內錯角性質。
 - (5) 平行線的外錯角性質。
 - (6) 平行線的同位角性質。
 - (7) 平行線的同側內角性質。
- 6. 線對稱圖形與點對稱圖形。

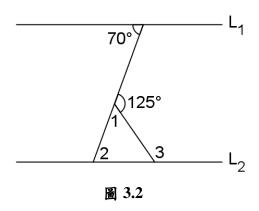
進階思考題

1. 已知:如圖 3.1, $L_1 \parallel L_2$, $\overline{AB} \parallel \overline{CD}$ 。

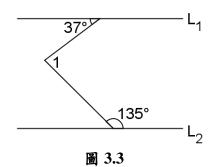
證明: ∠1+∠2+∠3+∠4=360°。



2. 如圆 3.2, L₁ || L₂, 求:



3. 如圖 3.3, L1 || L2, 則∠1=_____度。



4. 如圖 3.4, $L_1 \parallel L_2$,若 $\overline{AB} \perp \overline{BC}$,則 $\angle BCD = ______$ 度。

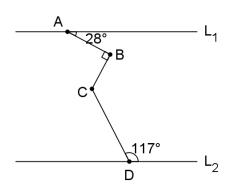
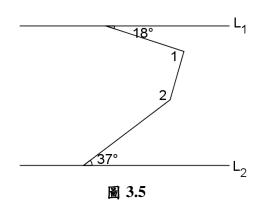
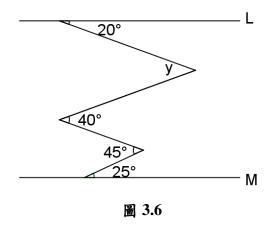


圖 3.4

5. 如圖 3.5,L₁ || L₂,∠1=(3x-25)°,∠2=(4x-13)°,則 x=____。



6. 如圖 3.6,L∥M,求 y=_______度。



7. 如圖 3.7 · L || M · 且 ∠1 = ∠2 · ∠3 = ∠4 · ∠B = 40° · 求∠ADC = _______ 度。

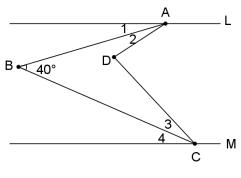
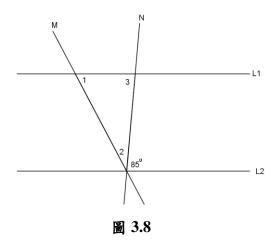


圖 3.7

8. 如圖 3.8,已知 $L_1 \parallel L_2$,M 和 N 都是 L_1 和 L_2 的截線,且 $\angle 1 \! = \! (8x+6)^\circ$, $\angle 2 \! = \! (2x+19)^\circ$,則:

- $(1) x = \underline{\hspace{1cm}} \circ$



9. 如圖 $3.9 \cdot L_1 \parallel L_2 \cdot \triangle ABC$ 為正三角形, $\angle 1 = 80^{\circ}$,則 $x = ______$ 度。

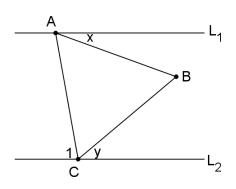


圖 3.9

10. 如圖 3.10, $L_1 \parallel L_2$, $\angle BAC = 18^\circ$, $\angle ABC = 20^\circ$,則 $x = \underline{\hspace{1cm}}$ 度。

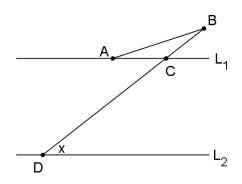
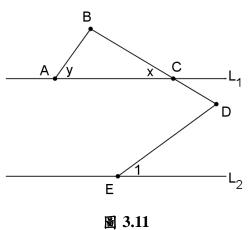


圖 3.10

11. 如圖 3.11, $L_1 \parallel L_2$, $\angle ABC=95^\circ$, $\angle 1=28^\circ$, $\angle CDE=67^\circ$,則 $x=___$ 度, $y=___$ 度。



12. 如圖 3.12, $\overline{AB} \parallel \overline{DC}$,則 x=_____,y=____, \angle BEC=_____度。

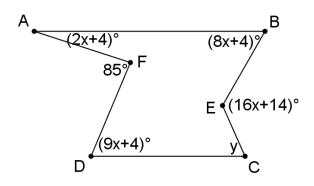


圖 3.12

13. 如圖 3.13, $L_1 \parallel L_2 \parallel L_3$,則 x =______度。

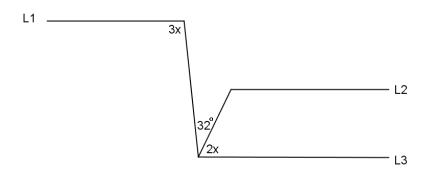
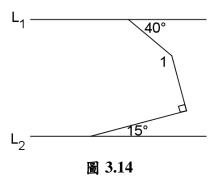
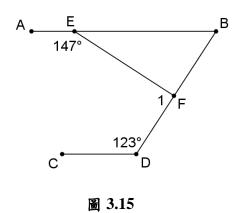


圖 3.13

14. 如圖 3.14, $L_1 \parallel L_2$,則 $\angle 1 =$ ______度。



15. 如圖 3.15, $\overline{AB} \parallel \overline{CD}$,E、F 分別在 \overline{AB} 與 \overline{BD} 上,求 $\angle 1$ 。



16. 如圖 3.16,直線 $L_1 \parallel L_2$, A、B 在 L_1 上, C、 D、E 在 L_2 上, 求 $\angle 1$ 、 $\angle 2$ 。

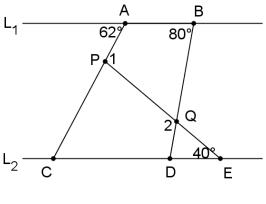


圖 3.16

17. 如圖 3.17, $\overline{AB} \parallel \overline{DE}$, $\overline{BC} \parallel \overline{EF}$, $\angle B = 30^{\circ}$,則 $\angle E = \underline{\hspace{1cm}}$ 度。

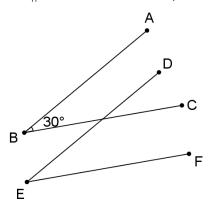


圖 3.17

18. 如圖 3.18, $\overline{AB} \parallel \overline{DE}$, $\overline{FE} \parallel \overline{BC}$, $\angle B = 42^{\circ}$,則 $\angle E = \underline{\hspace{1cm}}$ 度。

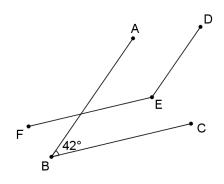


圖 3.18

19. 如圖 3.19, $\overline{AB} \parallel \overline{EF}$, $\overline{BC} \parallel \overline{DE}$, $\angle E = 80^{\circ}$,則 $\angle B = \underline{\hspace{1cm}}$ 度。

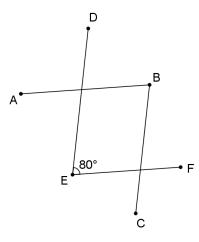


圖 3.19

20. 如圖 3.20, $\overline{AB} \perp \overline{DE}$, $\overline{BC} \perp \overline{EF}$, $\angle B = 37^{\circ}$,則 $\angle E = \underline{\hspace{1cm}}$ 度。

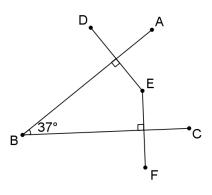


圖 3.20

歷年基測題目

- 1. 圖 3.21 中有直線 L 截過兩直線 L₁、L₂ 後所形成的八個角。由下列哪一個選項 中的條件可判斷 $L_1 \parallel L_2$? (98-1)
 - (A) $\angle 2 + \angle 4 = 180^{\circ}$
- (B) $\angle 3 + \angle 8 = 180^{\circ}$
- $(C) \angle 5 + \angle 6 = 180^{\circ}$
- (D) $\angle 7 + \angle 8 = 180^{\circ}$

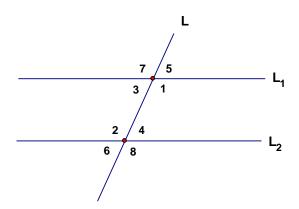


圖 3.21

解答:(B) ∠3+∠8=180°

想法: (1) 平行線同側內角和等於 180° (2) 對頂角相等

解:

敘述	理由
$(1) \angle 3 + \angle 2 = 180^{\circ}$	平行線同側內角和等於 180°
(2) ∠2=∠8	對頂角相等
$(3) \angle 3 + \angle 8 = 180^{\circ}$	由(1) & (2)

2. 如圖 3.22,長方形 ABCD 中,以 A 為圓心, \overline{AD} 長為半徑畫弧,交 \overline{AB} 於 E 點。 取 \overline{BC} 的中點為F,過F作一直線與 \overline{AB} 平行,且交 \widehat{DE} 於G點。求 $\angle AGF=?$

(A) 110°

(B) 120°

(C) 135°

(D) 150°

(98-1)

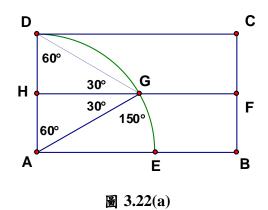


圖 3.22

解答:(D)150°

想法: (1) 正三角形之三內角相等

(2) S.A.S.三角形全等定理



解:

敘述

理由

(1) 連接 D 點與 G 點, 如圖 3.22(a)

(2) $\overline{AD} = \overline{AG}$

 $(3) \angle ADG = \angle AGD$

(4) $\overline{AH} = \overline{DH}$

 $(5) \angle AHG = \angle DHG = 90^{\circ}$

雨點可決定一直線

同圓的半徑相等

△ADG 為等腰三角形,兩底角相等

過平行四邊形一邊中點之平行線交於對 邊中點(平行四邊形性質於第六章會再詳 細證明)

長方形之每一角為90°,平行線之同位角 相等

(6) $\overline{HG} = \overline{HG}$

(7) \triangle AHG \cong \triangle DHG

(8) \angle HGA = \angle HGD

(9) ∠HDG=∠HAG ∠ADG=∠DAG

 $(10) \angle ADG = \angle AGD = \angle DAG$

 $(11) \angle ADG = \angle AGD = \angle DAG = 60^{\circ}$

(12) \angle AGD= \angle HGA + \angle HGD=60° 2 \angle HGA=60° \angle HGA=30°

(13) $\angle AGF + \angle HGA = 180^{\circ}$ $\angle AGF = 180^{\circ} - \angle HGA$ $= 180^{\circ} - 30^{\circ} = 150^{\circ}$ 同線段相等

由(3)(4)(5), SAS 全等三角形定理

全等三角形對應角相等

全等三角形對應角相等 同角相等∠HDG=∠ADG, ∠HAG=∠DAG

由(2)&(7)

△ADG 中三角相等,故每一角為 60° (三角形內角和 180°性質在第四章會再詳細介紹)

全量=全部分量和 由(7)

全量=全部分量和 將(11)代入(12) 3. 如圖 3.23,將四邊形鐵板 ABCD(四個內角均不為直角)平放,沿 \overline{CD} 畫一直線 L,沿 \overline{AD} 畫一直線 M。甲、乙兩人想用此鐵板,在 M 的另一側畫一直線 L_1 與 L 平行,其作法分別如下:(95-1)

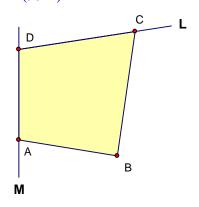
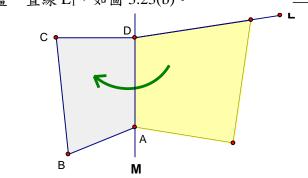


圖 3.23

甲:如圖 3.23(a),將鐵板翻至 M 的另一側,下移一些並將 \overline{AD} 緊靠在直線 M 上,再沿 \overline{CD} 畫一直線 L_1 ,如圖 3.23(b)。



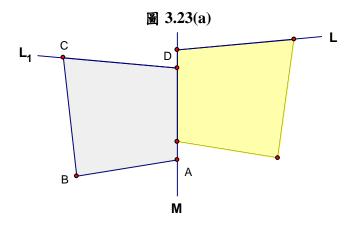


圖 3.23(b)

乙:如圖 3.23(c) ,將鐵板轉動到 M 的另一側,下移一些並將 \overline{AD} 緊靠在直線 M 上,再沿 \overline{CD} 畫一直線 L_1 ,如圖 3.23(d)。

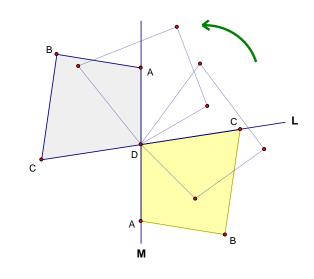


圖 3.23(c)

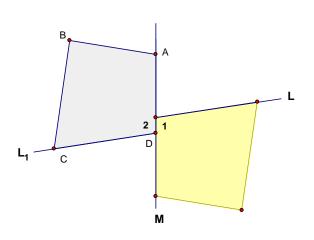


圖 3.23(d)

對於兩人的作法,下列判斷何者為正確?

(A) 兩人都正確 (B) 兩人都錯誤 (C)甲正確、乙錯誤 (D) 甲錯誤、乙正確

解答:(D) 甲錯誤、乙正確

想法: 內錯角相等之兩線平行。

解答說明:

敘述	理由
$(1) \angle 1 = \angle 2$	同角相等, ·· Z2 是 Z1 旋轉再平行得來,旋轉、 平行都不會改變角的大小。
(2) $L_1 \parallel L$	內錯角相等之兩線平行
·.乙正確	

4. 如圖 3.24,L 是 L_1 與 L_2 的截線。找出 $\angle 1$ 的同位角,標上 $\angle 2$,找出 $\angle 1$ 的 同側內角,標上 $\angle 3$ 。下列何者為 $\angle 1$ 、 $\angle 2$ 、 $\angle 3$ 正確的位置圖? (92-1)

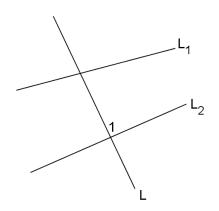
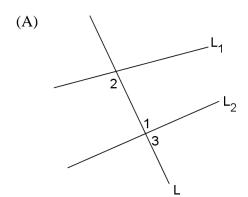
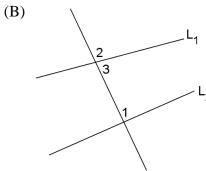
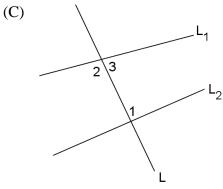


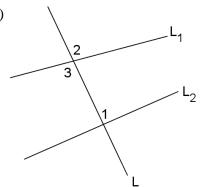
圖 3.24







(D)



解答: (B)

想法: (1) 同位角定義

(2) 同側內角定義

解答說明:

敘述	理由
(1) 答案選(B)	同位角定義、同側內角定義